THE NEXT STEPS

When you have finished with these examples, select a short
program of your own. Make sure that the debug program is loaded
as before, load your own progtam, and experiment with the different
functions available to you. Remember that you can get a reminder of
all the functions by entering ? from the debugger prompt.

You will find the debugger an invaluable tool when you are writing
programs. Keep it loaded in low memory (unless you are using the
low memory space for assembly) at all times when you are writing
an Extended BASIC program. Whenever you encounter a problem
and your newly written code does not behave as you expect it to, it
gives you a powerful tool to track down the source of the problem.
The more you use it, the more you will find it can do for you.

Genial Computaerware
Box 183
- Grefton, MA 01519

Page 15

|
|

il
(it
il
i1l

ee—
e —

 ©1987 J. Peter Hoddie

. Distributed by Genial Computerware

ENTERING THE DEBUGGER

To call up the debugger press then SHIFT and CTRL keys |

simultaneously. You may also enter the debugger with a CALL
LINK("GOBUG"). In either case, you will be presented with the main
debugger prompt (->). The' following commands will work at this
prompt, simply by pressing the first letter in their name.

. USING XB:BUG WITH XB/AL PROGRAMS

XB:BUG takes up about 5K of memory. if you include assembly with
your Extended BASIC program, which is becoming common these
days, you have a decision as to which version of XB:BUG to use.
The BUG program loader of XB:BUG puts the program in low
memory and you can load your assembly code (if it isn't too long) on
top of XB:BUG. If you have already loaded your assembly code, you
can use the DIS/FIX 80 file BUG/REL which will load after your
assembly code if there is enough room. The final alternative is to
use the DIS/FIX 80 file BUG/A000 which loads XB:BUG entirely into
high memory which means you have the entire low memory
expansion for assembly code as usual. However, if you use
BUG/A000, your BASIC program, when running, can not leave fewer

than 6000 bytes of program space free.

COMMAND SUMMARY

? ARRAY
This allows you to inspect the contents of an array. The array that
will be inspected is the last array that was listed using the Variables
command. You will be prompted for the "Parameters” of the array. If
you wished to look at element (3,14) of an array you would enter 3
for "#1 Parameter" and 14 for "#2 Parameter.” If you look up in &
string array and the string is a null string {length of zero), a blank line

will be displayed.

Page 3

BREAKPOINTS
Displays current breakpoint or break-range and allows you to modify
these values. To turn the break point off enter -1 for the first value
and enter as the second. To set a single line breakpoint enter the
line number at the first prompt and again at the second. To set a
break-range, enter the low line number at the first prompt, and the
high line number at thé second.

Note that you must turn off the breakpoint if the debugger is called in
this manner, or the debugger will continuously enable itself.

Nole: The reason for allowing a Break-range is because some lines
may execule to quickly for XB:BUG to be able to enable itself. A
Break-range should generally be used rather than a single line
Break-point. [f you really need a single line break point, put a CALL
LINK(*GOBUG") on the line and you will automatically enter XB:Bug.

Waming: Do not set a break point while in command meode, only set
it after you are sure the program has started executing. If you set a
break point while in command mode, the debugger may enable
itself while Extended BASIC is executing Pre-Scan.

CHANGE

This allows you to change the value of any numeric variable. To use
it you must first look the variable up using the V or A command. The
last numeric variable value displayed using the Variables or Array
command is the value that will be changed. When you select
Change, the current value wili be displayed and you will be
prompted for a new value. To keep the same value, just hit enter. if
you enter text, a value of 0 (zero) will be assigned to the variable, so
it is a good idea to check that the variable was changed correctly.

DATA/READ
Gives the line number from which the next READ will get its DATA
and .ais::-t shows the next actual DATA item that will be read.

FILES

Lists the unit number and device name associated with each open
file. The "mode" that the file was opened in is aiso given which is
either INPUT, UPDATE, APPEND, or OUTPUT. If there is any data
in the input/output buffer of this file it will be displayed. The buffer
could contain data that was read from the device, that will be written,
or that has been written. There is no way to tell, except common
sense, into which category the data falls. Note that this is an ASCH
dump of the data buffer. if the buffer contains floating point numeric
data it will appear as garbage. :

Page 4

- GRAPHICS

This section gives information on 3 main graphics categories: 1)
Character definitions, 2) Cqlor definitions, and 3) Sprite status. You
wiil be presented with @ menu of the 3 above items. After making
your selection you will be asked for the specific character definitions,
color tables, or sprites that you wish to see. If you want to see only
one, enter its number at the "FROM" prompt and hit enter at the "TQO"
prompt. To see a range enter the beginning of the range at the
"FROM" prompt, and the end of the range at the "TO" prompt. When
the display is complete, you will be returned to the main prompt.

For Characters the valid range of definitions is 30 {¢ 143. For Colors
itis 0 to 14. For Sprites itis 1 to 28. If a Sprite is not active (deleted)

it will be listed with a character of 160.

KiLL SOUND
This turns off the sound chip. When you return to BASIC, the next
sound will follow, after the current sound (which is now silent) has
finished. That is to say, if you interrupt a 4 second tone, after it has
been sounding for 2 seconds, and it is followed by another tone, it
will take 2 seconds, after you exit the debugger, before the second
tone will start. So in effect the Kill Sound silences the current tone,

but does not stop its timer.

, LIST |
Lists lines. You will be prompted for the start and stop lines. If you
wish 1o list only one line, enter that number as the first line number
and hit ENTER for the second one. If there are any Breakpoints set
{by the BASIC command BREAK, not XB:BUG's B command), the

line number will be preceeded with an asterisk. Note: the line listing
format is not exactly the same as is used by BASIC but it is
workable. NOTE: This command uses the MATCH function

described below.

Page 5

OTHER VARIABLE SPACE
This command allows you to look at the variables from the main
program or other subprograms regardliess of where you entered the
debugger. After you select Other you will be presented with a list of
3 choices. 1 is for first, which means to return to the variable space
that was active when you first entered the debugger. 2 is for
subprogram, which means to switch to the variable space of the last
BASIC subprogram fooked up using the S command. 3 is for user
defined variable space, which is defined by executing a CALL
LINK("SETSYM"} in the your program. To clarify, say you enter
XB:BUG from the main program, but want to look at a variable in the
subprogram FRED. Use the S command with a Match string of
FRED to allow XB:BUG to look up the subprogram FRED. Now
select the O command with choice 2, subprogram, to switch to the
variable space of the subprogram FRED. Now if you hit V, the

variables that are listed are those of FRED, not of the main program.

To switch back to the variable space of the main_program, simply
select O again, with choice 1, first variable space. The main reason
for the presence of the CALL LINK({"SETSYM") command is so that
you can keep track of the main program variable space, so that if
you enter XB:BUG from within a subprogram you can still look at the
variables of the main program. In general, if you are using
subprograms you should make the CALL LINK one of the first lines
of your program to insure that you can always access the main
programs variables by using the O command with option 3, user
defined variable space. The O command has been included

primarily for advanced users. For an example of its use see the
example section of this manual.

PROGRAM
This supplies general information about the program inciuding line
number executing, the ON ERROR line number if one has been set,
and Option Base. If the following are active, you are notified: On

Break, Trace.

QUIT |
Exits the debugger and returns you to whatever was going on when
the debugger was entered.

SUBPROGRAMS |
Lists all defined subprograms. if the subprogram is written in BASIC
the line number which contains its SUB statement will be listed after
the words "AT LINE." If the BASIC subprogram is currently active,
this is indicated by *IN USE*. If BASIC is executing a Subprogram,
only the subprogram calls that are vaiid from within that subprogram
are displayed. Note: This command uses the MATCH function

described below.
| Page 6

TRACE
This feature traces back all pending GOSUB and SUBPROGRAM

returns. They are listed in order that they are pending, i.e. the first
listing is the next pending return. A gosub entry tells FROM what
line the GOSUB was executed ‘and TO where it went. It will return to
the line listed after FROM. For example, the statement

10 GOSUB 300

would result in a listing of

FROM 10 TO 300

from the Trace command.
A subprogram listing gives the name of the subprogram and the line

to which it will return when it reachs a SUBEND or SUBEXIT.
Nole: Because of the way the stack is maintained by BASIC, it is
nossible, but very unlikely, that a completely absurd entry may

appear.

VARIABLES
List variables (and functions) with their current values. iIn the case of

an array, the dimensions are given. If the program is in a
subprogram, the variables for the subprogram are shown. Note:
This command uses the MATCH function described below.

| 9 | i
This displays all valid keypresses. Sort of a primitive "help® key.
Only here because it only cost 5 bytes!

| MATH FUNCTIONS
You can perform simple math calculations from the debugger At the

 main prompt hit the function you wish to perform: +, -, *, or /. You will
then be prompted for two numbers and the result will be displayed.

Please note that these numbers may be fioating point, and should
be entered in the same format as numbers for BASIC.

Page 7

E!!!!'H!g

-MATCH FUNCTION
Several of the commands in the debugger prompt for a MATCH
string. This is a method for looking up specific data in a long list of
information. If you want the entire list, just hit ENTER at this prompt
and all data will be presented. If you want to look up the value of the
variable A, you can jyst.enter A= for the Match siring and it would

only display the variable A.

The Match command also supports “wild cards.” These are special
characters that allow you to do more complicated searches. The first
"wild card” character is the question mark (?). This tells the search
routine to skip to the next character. So if you wanted to search for
all 2 character variable names you could enter ??= as the match
string. if you wanted to see all 2 character variable names

beginning with the letter Z you could enter Z?= for the match string.

The other "wild car@”® character is the asterisk (*} which says find the
string after me. For example, the Match string *Z says find any string
that has a Z. The Match string A* says find any string that begins
with A If you wanted to search for all variables that began with the

letters FLAG, you would select a Match string of FLAG* and that
would do it. A "?"is treated like any other character after a "** and

you may only have one "*" in a Match string. Thus to search for a
string containing a "?" use the Malich string *?. Wild cards are a very
powerful tool for searches, as you will discover in using them.

NOTES
If a command has nothing to display, it shows nothing and returns
you to the prompt.

if you ask for PROGRAM information or DATA/READ and a program
is not active, the information will probably be garbage.

Just about any output can be paused by holding down the space
bar..

XB:BUG will not work with Myarc XB il because of the radically
gifferent layout of memory. It will work with any version of Extended
BASIC based on Ti's Extended BASIC including Mechatronics XB

I+, and MG's GK Extended BASIC.

Page 8

THANK YOU

This program owes much to Barry Traver, who constantly reported
bugs and quirks along with many heipful sugggestions. XB:BUG
was inspired by and is dedicated to Jim Peterson and Barry Traver
who manage to push Externded BASIC to its limits. it is hoped that
this program will make their jobs a little easier. Thanks to Todd
Kaplan for creating ALSAVE which aliowed me to create the fast
loading BUG file. Thanks to Mike Dodd for his helpful last-minute
suggestions. A special thanks to Doug Warren and Craig Miller of
Millers Graphics for creating Explorer, an assembly language
debugging tool (and much much more) which was invaluable in
creating XB:BUG. A quiet thanks to MS for his Xerox machine.

EXAMPLES
EXAMPLE 1

1. From Extended BASIC, load the debugger by entering
RUN "DSK1.BUG"

2. Load the demo program by entering
OLD "DSK1.DEMO1*"

3. Just to see what the Extended BASIC program is type
LIST
and then type
RUN
and let the program finish so we can continue with the next step.

4. When the cursor re-appears enabie the debugger by hitting
SHIFT and CTRL at the same time. You will be presented with its

main prompt and we are ready to begin.

5. First list the program from the debugger, using its list command.
Hit L, then at *FROM" enter 10 and at "TO" enter 1000. Hit ENTER at
*MATCH?" and the program will be listed for you. Note that this listing
format is rather different from that used by Extended BASIC, in that it
IS a bit more spaced out.

6. Now lets try out the match function. Hit L again and enter 10 and
1000 again, but for the match string enter *“DISPLAY. Only the lines .
that contain the word "DISPLAY" are listed because of the use of the
wildcard character "*" described under the Match function section.

Page 9

7. Now try out the Variables command. Just hit "V" from the main
prompt and hit ENTER for the Match string to see a list of all
variables and their values. Note that the dimension A$ is just listed

- with its dimension, not its data. The value of DELAY is 151, not 150,

because the FOR-NEXT loop increrements DELAY before
comparing to the "end"” value of 150 and deciding to end the loop.

8. To see the value of a ;;articular element of the array AS$, hit A for
Array and enter 6 for "#1 Parameter” {0 see A%(6). You can look at

other elements of A$ the same way.

8. Now look up the value of the variable Z using the Variable
command. Hit V for Variable and enter Z= as the Match string. This

will display Z=8.

10. To change the value of Z, which we just looked up, hit C for
Change. You will see the current value which is 8. At the "TO"
prompt enter a new value of 12.3. You can just hit enter to keep the

current vailue.

11. Hit V and hit ENTER for the Match string to see the changed
value of Z.

12. Now hit S to get a listing of all the Subprograms that are
available. In this case the only one is CLEAR.

13. Now hit D for Data to see what the next item that would be read
by the READ statement is. It will be at line 1000 and the data will be

HAROLD.

14. To sea that this is correct, hit L to list, enter 1000 at "FROM" and
hit ENTER at "TO" and line 1000 will be listed. This contains the
DATA statement. Note that there are 8 data items, the eighth of
which is HAROLD, but we only read 7, so the data displayed at step

13 is correct.

15. Hit Q t0 exit the debugger and return to BASIC.

16. From BASIC type

PRINT Z
to see that indeed Z now equals 12.3 as we set it in step 10.

Page 10

EXAMPLE 2

1. If you have just done Example 1, the debugger is already loaded,

S0 you can proceed to step 2. Otherwise ioad the debugger by
entering {

RUN "DSK1.BUG"
from Extended BASIC.

2. Load and run the demo program by entering
HUN "DSK1.DEMO2"

- 3. When you hear a tone, enable the debugger by hitting

SHIFT-CTRL.

4. By now you have probably gotten quite _'annoyed with the noise
coming from your monitor so hit K to Kill sound.

9. Now List the program to see what we are working with. Hit L and
then 10 for "FROM" and 100 at "TO." Note that the program
essentially just clears the screen, defines character 128, sets color

set 12 to 4,3, and enables 10 sprites.

6. Hit G for Graphics, and select 1 for Characters. Enter 128 for
"FROM" and hit ENTER for "TO". You will see the definition of
character 128 as it was set in line 20. Note that the character itself is

shown after the definition.

7. I-ht G again and select 1 for Characters. Enter 32 for *FROM" and
42 for "TO." This will list all characters from 32 to 42 with their

definitions.

8. Now we'll look at the color sets. Hit G and select 2 for Colors.
Enter 10 for "FROM" and 14 to "TO." This will show you the color
sets from 10 to 14 as they are defined in BASIC. The format is:
Color Set Number, Foreground color, Background color. Also note
that Extended BASIC default colors are foreground of 2 (black) and

background of 1 (transparent)..

9. Let's look at the sprite data next. Hit G and select 3 for Sprites.
Enter 1 for "FROM" and 11 for "TO." This will show you data on
sprites 1 to 11 in the same format as a CALL SPRITE statement,

which is: Sprite Number, Sprite Character, Sprite Color, X position,,

Y position, X velocity, Y velocity. Note that if a sprite is deleted with
the DELSPRITE command or was never created, it will have a
character of 160.

Page 11

10. Hit P for Program information to see what line is currently being
executed, the Option Base {which defaults to 0), and that ON ERROR

is set to line 70 as we set it in line 5.

11. Hit Q to exit the debugger and return to the running program.
When you are bored with the dull demo, just hit FCTN-4 to stop it.

e

EXAMPLE 3
1. Make sure the debugger is loaded as in step 1 of example 1.

2. Load and run the program for this example by typing
RUN "DSK1.DEMO3"

3. You will be prompted to "HIT ENTER." Don't do it. Instead enable
the debugger by hitting SHIFT-CTRL.

4. From the debugger hit S to list Subprograms and hit ENTER for
the Match string. You will see a listing that says

FRANK AT LINE 500 “IN USE*
This means that there is a subprogram named FRANK that begins at

line 500 and that is currently being used.

5. If you now list the program with the L command, FROM 5,TO 2000

and ENTER for Match string you will see the program. Essentially
the program does a GOSUB to 500 which CALLs FRANK and the

the program sits around doing nothing at line 20.

6. Now hit T for TRACE. This will tell you that FRANK RETURNS TO
500 and that there is a GOSUB that has not returned that was
executed at line 10 and went to line 500. This is obviously the
GOSUB 500 in line 10 that will be resolved by the RETURN at line

510.

7. Now hit V for variables and hit ENTER for Match string. You will
only s€e the variable A$ listed, not the variable X from line 5
because the Variable command only shows variables that are valid

for the subprogram you are in.

8. Now we will set a Breakpoint at line 20, so that when the program
gets there, the debugger will appear automatically, without having to
hit a key. To do this hit B for Breakpoint and enter 20 for FROM and

20 for TO.

9. Exit the debugger with a Q to return to the program.

Page 12

10. Hit enter to allow the program to continue.

11. When the pi'ogram feaches line 20, the debugger will appear.'
First hit P for program information to see that, in fact, it is at line 20.

12. Now remove the break point by hitting B, and entering a value of
-1 for FROM and hit enter for TO.

13. Hit V to list the variables. Note that now X is present since we
are no longer in the subprogram, but that A$ is gone because it only
exists inside the subprogram FRANK.

14. Hit Q to exit the debugger and FCTN-4 to end this rather duil
demo.

EXAMPLE 4

1. Make sure that the debugger is loaded as in step 1 of of example
1.

2. Load the program by entering
RUN "DSK1.DEMO4"
from Extended BASIC.

3. The program will start. It is a very simple program that opens up a
file called "TEXT" on DSK1 and displays the data on the screen, with
a delay between lines. Before the program is done running, enable
the debugger by hitting SHIFT-CTRL and list it by hitting L, enter 10
for "FROM®, 100 for “TO", and hit ENTER for Match string.

4. The whole point of this example is to show the File command, so
next hit F. It will show you that unit #1 is the file "DSK1.TEXT" and

was opened in iNPUT MODE. On the line after the word BUFFER
you will see the current contents of the input buffer.

5. Exit the debugger by hitting Q.

6. Before the program ends, try steps 3 through 5 a number of times
to see how the buffer changes.

Page 13

EXAMPLE 5

1. Make sure that the debugger is locaded as in step 1 of of example
1.

2. Load the program by entering
RUN "DSK1.DEMOS"
from Extended BASIC.

3. Wait about 5 seconds and then enter the debugger by hitting
SHIFT-CTRL. List the program using the List command and lines 1
to 500. Note that the program does a CALL LINK("SETSYM") at first
to define the variable space of the main program (see the O
command for details), then assigns some variables in the main
program and then assigns some variables in subprograms, before

coming to a complete halt at line 230.

4, At this point, hit V and and ENTER for match string, to see the
variable of the subprogram FRED where the program is currently

executing.

5. Now we will look at the variables of subprogram JOE. Hit S and
enter JOE as a Match string. Now hit O and select 2 to switch to the
variable space of the last subprogram looked up with the S
command, namely JOE. Now hit V and ENTER for Match string to

see the variables of the subprogram JOE.

6. To see the variables of the main program hit O and select 3 to
switch to the user defined variable space, which in this case is the
main program as defined by the placement of the CALL
LINK("SETSYM") statement. Hit V and ENTER as Match string to

see these variables.

7. To get back to the variable space of FRED, we can either look it
up using the S command as in step 5, or simply hit O and select 1, to
switch to the variable space that we entered the debugger in, which
in this ease is JOE. Now hit V and enter for Match string to see that
we are back in the variable space of FRED.

8. Hit Q to exit the debugger and FCTN-4 to end the program. You
might want to try creating some of your own programs like this to

learn how to use the O command.

Page 14

